having problem plotting ramp function

67 visualizzazioni (ultimi 30 giorni)
Tien Yin
Tien Yin il 2 Dic 2024 alle 7:41
Commentato: Tien Yin il 3 Dic 2024 alle 15:50
the line f(0001:3000)=((f0/3)*dt);
was supposed to maek the f(t) plot having a ramp function of f0/3 * time when time is at 0~3
I tried f(0001:3000)=((f0/3)*time) and it got an error which says "Unable to perform assignment because the left and right sides have a different number of elements."
please help
  5 Commenti
VBBV
VBBV il 2 Dic 2024 alle 14:22
Modificato: VBBV il 3 Dic 2024 alle 2:45
@Tien Yin You can modify the present code as below. A better way to do is to use piecewise function as mentioned by @Sam Chak
clc
clearvars
m=5;
k=18;
c=1.2;
f0=100;
wn=sqrt(k/m);
cc=2*m*wn;
Dr=c/cc;
wd=wn*sqrt(1-Dr^2);
time=linspace(0,10,5001);
idx1 = find(time==3); %
idx2 = find(time==5); % use find
f=zeros(1,length(time));
for kx = 1:numel(time)-1
if kx <= idx1
f(kx+1)=f(kx) + (f0/3)*(time(kx+1)-time(kx));
elseif kx>idx1 & kx<=idx2
f(kx+1) = 100;
else
f(kx+1) = 0;
end
end
figure;
plot(time,f);xlabel('t(s)'); ylabel('f(t)')
xticks(1:1:10);grid
axis([0 10 0 110])
Tien Yin
Tien Yin il 3 Dic 2024 alle 15:50
Thanks! So far I think using heaviside is a clearer way to present function too

Accedi per commentare.

Risposta accettata

Shivam
Shivam il 2 Dic 2024 alle 8:41
Hi Yin,
You can use the below script to get the desired figures.
m = 5;
k = 18;
c = 1.2;
f0 = 100;
wn = sqrt(k/m);
cc = 2*m*wn;
Dr = c/cc;
wd = wn*sqrt(1-Dr^2);
dt = 0.01; % assumed dt
time = 0:dt:10;
f = zeros(1, length(time));
f(1:round(3/dt)) = (f0/3) * (0:dt:3-dt); % Linear increase from 0 to 3 seconds
f(round(3/dt)+1:round(5/dt)) = f0; % Constant from 3 to 5 seconds
% f remains 0 after 5 seconds
g = (1/(m*wd))*exp(-Dr*wn*time).*sin(wd*time);
x = conv(f, g)*dt;
x = x(1:length(time)); % Ensure x is the same length as time
figure;
subplot(221); plot(time, f, 'r'); xlabel('t(s)'); ylabel('f(t)');
subplot(222); plot(time, g); xlabel('t(s)'); ylabel('g(t)');
subplot(223); plot(time, x); xlabel('t(s)'); ylabel('位移(m)');
Hope it helps.

Più risposte (1)

Sam Chak
Sam Chak il 2 Dic 2024 alle 9:56
The signal in the image is a piecewise function that consists of three sub-functions defined over different intervals: , , . You can apply the piecewise() function from the Symbolic Math Toolbox, or you can use the MATLAB indexing approach (though this method may not be suitable for publication in a journal).
Alternatively, you can use a direct math formula to combine the sub-functions into a one-line equation, as shown below. Since the second and third sub-functions can be described using a Heaviside function, this effectively reduces the representation to "two" sub-functions.
If you are interested, you can find another example here:
t = linspace(0, 10, 1001);
t1 = 3;
t2 = 5;
% Functions at subintervals
f1 = 100/3*t; % y1, Ramp function at t < t1
f2 = 100*heaviside(t2 - t); % y2, Heaviside function at t > t1
% Applying the Piecewise Function Put Together (PFPT) formula
f = f1 + (f2 - f1).*heaviside(t - t1);
% Plot
plot(t, f, 'linewidth', 1.5), grid on, ylim([-50, 150])
title('Piecewise Function')
xlabel('t')
ylabel('f(t)')
  1 Commento
Tien Yin
Tien Yin il 2 Dic 2024 alle 16:47
thanks alot!
i'm new to MATLAB now I learnt a new way to display piecewise function!

Accedi per commentare.

Tag

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by