How to disable validation and test data set in neural network
    6 visualizzazioni (ultimi 30 giorni)
  
       Mostra commenti meno recenti
    
I need to train patternnet neural network using all data set in the training set and avoiding validation check. I found two methods and they works very well in command line but not in a script returning very simple errors.
method 1:
   mynet.divideFcn = '';
method 2:
   mynet.divideParam.trainRatio = 1;
   mynet.divideParam.valRatio   = 0;
   mynet.divideParam.testRatio  = 0;
and the code:
   mynet=patternnet([]);
   P=rand(10,1000);
   T=rand(2,1000);
 [mynet,tr]=train(mynet,P,T);
Matlab R2012 b windows xp 32
Thanks !
0 Commenti
Risposte (2)
  Greg Heath
      
      
 il 14 Feb 2020
        You have to define net before modifying any properties.
clear all, close all, clc
[x,t] = iris_dataset;
for i = 1:2
   net   = patternnet([]);
    if i==1
      net.divideFcn = '';
    else 
       net.divideParam.trainRatio = 1;
       net.divideParam.valRatio   = 0;
       net.divideParam.testRatio  = 0;
    end
    net = train(net,x,t);
    view(net)
    y      = net(x);
    MSE(i) = mse(y-t)   
end
MSE = 0.0084    0.0084
Hope this helps.
Greg
0 Commenti
  Prasanth Sundaravelu
 il 26 Apr 2018
        
      Modificato: Prasanth Sundaravelu
 il 26 Apr 2018
  
      Hi, I think you need to type specific Divide function, instead of blank.
Try this : mynet.divideFcn = 'dividerand';
1 Commento
Vedere anche
Categorie
				Scopri di più su Image Data Workflows in Help Center e File Exchange
			
	Prodotti
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!