Contenuto principale

Risultati per


One great thing about IoT projects is they are connected to the internet, and that creates an opportunity to collaborate at a distance. Here are resources to help you teach classes that involve remote learning.

  • Record and visualize your experiment's data in ThingSpeak channels. For example, this public soil monitor channel shows measurements from a sensor connected to a plant. You can see the ThingSpeak example pages for help getting your experiment connected.

Figure 1: Fitvirus sample results.

When you can’t make it into the lab, use ThingSpeak to monitor and control your lab equipment for experiments and for teaching.

  • When you use ThingSpeak channel values to control your hardware modes, students can run experiments from home, and even collaborate with others to control devices and collect data for analysis.

Figure 2: Sample ThingSpeak lab model.

  • Build a simulation model to deploy on hardware and control it remotely. Watch this video to see how you can do both simulation and deployment in the same Simulink model. You can also download the models used in the video.
  • Use ThingSpeak to analyze your data. Use the provided code templates (like this one for removing outliers from wind speed data) or custom MATLAB code to filter and analyze your data and schedule it to run at regular intervals.

regularFlag = isregular(data,'Time')

Hi All,

Looking for guidance on how to represent a PMSM 3-Phase Converter (DC bus to AC) as a simply 1st Order Transfer Function in my Simulink model.

Researching this, have found we can show the Power Converter as a simple gain and time delay such as G_inv(s) = K_Inv/(1 + T_inv s)

The gain requires V_cm, which is the control voltage, is this control voltage the "Forward Voltage, Vf" in Switching Devices tab in the block?

Is my assumption for the tf for the converter correct?

Thanks

Patrick

IFM
IFM
Ultima attività il 23 Set 2020

I get students to create some figures in MATLAB Grader. Is there anyway the students can save the figure on their computer? I have tried savefig and that doesn't seem to do anything.

Chen Lin
Chen Lin
Ultima attività il 23 Gen 2021

Below are some FAQs for the Cody contest 2020. If you have any additional questions, ask your questions by replying to this post. We will keep updating the FAQs.

Q1: If I rate a problem I solved before the contest, will I still get a raffle ticket?

A: Yes. You can rate any problem you have solved, whether it was before or during the contest period.

Q2: When will I receive the contest badges that I've earned?

A: All badges will be awarded after the contest ends.

Q3: How do I know if I’m the raffle winner?

A: If you are a winner, we will contact you to get your name and mailing address. You can find the list of winners on the Cody contest page .

Q4: When will I receive my T-shirt or hat?

A: You will typically receive your prize within a few weeks. It might take longer for international shipping.

Q5: I'm new to Cody. If I have some questions about using Cody, how can I get help?

A: You can ask your question by replying this post. Other community users might help you and we will also monitor the threads. You might also find answers here .

Q6: What do I do if I have a question about a specific problem?

A: If the problem description is unclear, the test suite is broken, or similar concerns arise, post your question(s) as a comment on the specific problem page. If you are having a hard time solving a problem, you can post a comment to your solution attempt (after submitting it). However, do not ask other people to solve problems for you.

Q7: If I find a bug or notice someone is cheating/spamming during the contest, how can I report it?

A: Use Web Site Feedback . Select "MATLAB Central" from the category list.

Q8: Why can't I rate a problem?

A: To rate a problem, you must solve that problem first and have at least 50 total points.

It's pretty odd how a solution that uses more characters than usual can be the "leading solution" of a Cody problem and have the least size. Compare these two codes that find the sum of integers from 1 to 2^x, which one uses fewer characters, thus should be the better solution?
function y = sum_int(x)
regexp '' '(?@y=sum(1:2^x);)'
end
function ans = sum_int(x)
sum(1:2^x)
end

Dear power electronics control community,

Since I have not solved the problem and have not found an answer to why I receive such an output, I would be happy when you could help me out. The actual project is much more extensive but easy schematic of what I want to do is here:

For that, I am using 2-level PWM generator: https://se.mathworks.com/help/physmod/sps/powersys/ref/pwmgenerator2level.html In the DC-link (DC voltage after the converter) the DC voltage output should be more-less constant (with a little noise) but right now it very far away from the desired output:

Does anyone have a idea what might cause this problem?

Jiro Doke
Jiro Doke
Ultima attività il 21 Ago 2020

Take a look at this video on remote access robotics lab. It allows students to submit algorithms and have them run on a robot completely remotely.

Robotarium

Here (16:56) is where the submission process is explained.

Professor Christophe Demaziere from Chalmers University of Technology, Sweden created a short course on nuclear reactor modeling.

  • The course followed a flipped and hybrid approach last year but will most likely be taught entirely online in future due to Covid-19 pandemic.
  • MATLAB Grader greatly facilitates the Online nature of Christophe's courses.
  • Student Feedback was also very positive saying that they learned better compared to the traditional approach.

More details in the article

I'm trying to list out some videos, courses, and other links to learn more about Machine and Deep Learning. Here are some links to getting started with AI/Machine Learning/Deep Learning with MATLAB:

Artificial Intelligence:

Machine Learning:

Data Analytics:

Neural Networks and Deep Learning:

If any of you are using other resources from the MathWorks website or elsewhere, please consider adding it below as a comment.

Thanks!

Hello,

I am a student. I am currently looking into graph neural networks (GNNs). My domain is electrical power systems. In electrical power systems, it is extremely important that we get an accurate desired output numerical value of electrical data from a neural network.

1) I have a basic question. Consider an electrical grid network of nodes. I am trying to learn this electrical grid network data using Graph Neural Network (GNN). Every node of a GNN accumulates data from neighboring nodes, then processes it by a few steps of an algorithm, and passes it to the next layer. Finally, data is passed through a non-linearity and then to the output layer of the GNN.

But, if I feed electrical data to the above process, the original value of data at every node gets manipulated by several processing operations, and especially after passing the manipulated data through a non-linearity at the final stage, the output is obtained only in the form of 1's and 0s. Hence, the original electrical data value at every node is totally lost. On the contrary, I am expecting an output of an "accurate" value of electrical data similar to original value electrical data at every node of the network.

How to address the above problem? Please explain systematically if possible. This is a genuine basic question.

2) Also, does anyone have a clue, why Graph Neural Networks (GNNs) have not been introduced yet as a toolbox or in general in Matlab?

Help and opinion on above questions would be greatly appreciated.

Hi Everyone, I am trying to simulate the third-order model of the synchronous generator (figure below). but I have no idea how to do this. Any help would be great.

Shogo
Shogo
Ultima attività il 21 Ago 2020

help

Thank you for your helping. I'm trying to import csv files form a folder, however it does not work.

The following code might be wrong.. fname=mtlb_dir('Users/shogo/Left_Leg_Single-Leg_Landing/SLLExport/*.exp')

I appreciate it if you help,

Sincerely, Shogo

This year, the 3-day MATLAB workshop is going Virtual: October 11-13 2020. (Sunday evening - Tuesday afternoon, CST). If you're teaching science, math, engineering or related disciplines, consider signing up now. The application deadline is July 31st. Apply for the workshop: Workshop Application

Details: Name: Teaching Online Computation Using MATLAB (Virtual) Date: October 11-13 2020 (Sunday afternoon -- Tuesday mid-afternoon, US time zones) Location: Zoom session Audience: Educators teaching undergraduate and graduate-level science, math, engineering and related disciplines

At the 2020 virtual workshop, you’ll have opportunities to • Curriculum: Upgrade your curriculum with a focus on transitioning to online learning • Mentoring: Meet in 1-on-1 coaching sessions with faculty, education professionals, and MATLAB experts • Publish and Cite: Get your teaching activities peer reviewed and citable for inclusion in your CV • Community: Collaborate with and build connections to a network of educator peers all working on impactful computational skill development in their courses • Learn: Learn how to embed new MATLAB tools in courses to improve student learning (Note that the workshop will use online technologies to enable 1-on-1 mentoring, group work, and community building. As in past years, the focus will be curriculum development, less presentation.)

In addition, you’ll have the chance to learn how to incorporate MATLAB Live Scripts, MATLAB Online, MATLAB Grader, and more.

This virtual will include working groups for building your curriculum. Participants will be matched with like educators.

Apply now to save your spot and help the conveners plan effective groups.

The workshop hosts will review applications and send acceptances status by early August.

Looking forward to your participation in the workshop, Cathy Manduca, Executive Director, SERC Lisa Kempler, Sponsor, MathWorks Don Baker, McGill University, workshop convener Dan Burleson, University of Houston, workshop convener and review editor Kelly Roos, Bradley University, workshop convener and reviewer Kristi Closser, California State University, Fresno, workshop convener and reviewer

P.S. For reference, 2019 workshop program

Looking to get Solar Grid Tie Inverter developed including Hardware + Software + Enclosure design (IP 65) for single phase inverters from 1 KW to 6 KW.

Here's an thread on comparing various types of instructional labs (on-campus, virtual, remote, kits). Each type has pros/cons and things that you need to consider.

https://twitter.com/RebeccaEE/status/1237561015350386690

Rik
Rik
Ultima attività il 17 Set 2024

Similar to what has happened with the wishlist threads (#1 #2 #3 #4 #5), the "what frustrates you about MATLAB" thread has become very large. This makes navigation difficult and increases page load times.
So here is the follow-up page.
What should you post where?
Wishlist threads (#1 #2 #3 #4 #5): bugs and feature requests for Matlab Answers
Frustation threads (#1 #2): frustations about usage and capabilities of Matlab itself
Missing feature threads (#1 #2): features that you whish Matlab would have had
Next Gen threads (#1): features that would break compatibility with previous versions, but would be nice to have
@anyone posting a new thread when the last one gets too large (about 50 answers seems a reasonable limit per thread), please update this list in all last threads. (if you don't have editing privileges, just post a comment asking someone to do the edit)

As an environment for modeling, simulating, and testing dynamic systems, Simulink is used for:

Simulink is now available in a web browser as Simulink Online.

Simulink Online is available to anyone with access to MATLAB Online (see supported license types here) and a Simulink license.

Just sign into MATLAB Online and either start Simulink or open a Simulink model.

Learn more about Simulink Online at the product page on our website.

Simulink Online currently supports the following toolboxes, with more to be added in the future!

  • Simulink
  • Stateflow
  • Simscape
  • Simscape Electrical
  • Simscape Multibody
  • Simulink Control Design
  • DSP System Toolbox

MathWorks gave a perspective on 'Bridging the Technology Readiness Gap with Simulation and Virtual/Remote Testbenches' at the Opal-RT RT20 Panel Session on The Role of Real-Time Simulation in Education. Listen to a recording of the panel session, and also hear perspectives from Quanser, Hydro-Quebec, and RWTH Aachen, by registering for the RT20 conference at the following link .

The EMEA (Europe, Middle East and Africa) Academic Engineering Team are hosting a series of live online webinars every Tuesday and Wednesday. Get up to speed with online teaching and research with MATLAB and access ready-to-use resources.

Watch the introductory video and register here