Set di dati campione per reti neurali superficiali
Il Deep Learning Toolbox™ contiene numerosi set di dati campione che si possono utilizzare per sperimentare con le reti neurali superficiali. Per visualizzare i set di dati disponibili, utilizza il seguente comando:
help nndatasets
Neural Network Datasets ----------------------- Function Fitting, Function approximation and Curve fitting. Function fitting is the process of training a neural network on a set of inputs in order to produce an associated set of target outputs. Once the neural network has fit the data, it forms a generalization of the input-output relationship and can be used to generate outputs for inputs it was not trained on. simplefit_dataset - Simple fitting dataset. abalone_dataset - Abalone shell rings dataset. bodyfat_dataset - Body fat percentage dataset. building_dataset - Building energy dataset. chemical_dataset - Chemical sensor dataset. cho_dataset - Cholesterol dataset. engine_dataset - Engine behavior dataset. vinyl_dataset - Vinyl bromide dataset. ---------- Pattern Recognition and Classification Pattern recognition is the process of training a neural network to assign the correct target classes to a set of input patterns. Once trained the network can be used to classify patterns it has not seen before. simpleclass_dataset - Simple pattern recognition dataset. cancer_dataset - Breast cancer dataset. crab_dataset - Crab gender dataset. glass_dataset - Glass chemical dataset. iris_dataset - Iris flower dataset. ovarian_dataset - Ovarian cancer dataset. thyroid_dataset - Thyroid function dataset. wine_dataset - Italian wines dataset. digitTrain4DArrayData - Synthetic handwritten digit dataset for training in form of 4-D array. digitTrainCellArrayData - Synthetic handwritten digit dataset for training in form of cell array. digitTest4DArrayData - Synthetic handwritten digit dataset for testing in form of 4-D array. digitTestCellArrayData - Synthetic handwritten digit dataset for testing in form of cell array. digitSmallCellArrayData - Subset of the synthetic handwritten digit dataset for training in form of cell array. ---------- Clustering, Feature extraction and Data dimension reduction Clustering is the process of training a neural network on patterns so that the network comes up with its own classifications according to pattern similarity and relative topology. This is useful for gaining insight into data, or simplifying it before further processing. simplecluster_dataset - Simple clustering dataset. The inputs of fitting or pattern recognition datasets may also clustered. ---------- Input-Output Time-Series Prediction, Forecasting, Dynamic modeling Nonlinear autoregression, System identification and Filtering Input-output time series problems consist of predicting the next value of one time series given another time series. Past values of both series (for best accuracy), or only one of the series (for a simpler system) may be used to predict the target series. simpleseries_dataset - Simple time series prediction dataset. simplenarx_dataset - Simple time series prediction dataset. exchanger_dataset - Heat exchanger dataset. maglev_dataset - Magnetic levitation dataset. ph_dataset - Solution PH dataset. pollution_dataset - Pollution mortality dataset. refmodel_dataset - Reference model dataset robotarm_dataset - Robot arm dataset valve_dataset - Valve fluid flow dataset. ---------- Single Time-Series Prediction, Forecasting, Dynamic modeling, Nonlinear autoregression, System identification, and Filtering Single time series prediction involves predicting the next value of a time series given its past values. simplenar_dataset - Simple single series prediction dataset. chickenpox_dataset - Monthly chickenpox instances dataset. ice_dataset - Global ice volume dataset. laser_dataset - Chaotic far-infrared laser dataset. oil_dataset - Monthly oil price dataset. river_dataset - River flow dataset. solar_dataset - Sunspot activity dataset
Nota che tutti i set di dati hanno nomi di file con il formato name_dataset
. All’interno di questi file si trovano gli array nameInputs
e nameTargets
. È possibile caricare i set di dati nel workspace con un comando come
load simplefit_dataset
In questo modo, simplefitInputs
e simplefitTargets
saranno caricati nel workspace. Per caricare gli array input e target all’interno di nomi diversi, si può usare un comando come
[x,t] = simplefit_dataset;
In questo modo, gli input e i target saranno caricati negli array x
e t
. È possibile visualizzare una descrizione dei set di dati con un comando come
help maglev_dataset
Vedi anche
Neural Net Fitting | Neural Net Clustering | Neural Net Pattern Recognition | Neural Net Time Series