Fitting della rete neurale
Risolve il problema del fitting utilizzando reti feed-forward a due livelli
Descrizione
L’app Neural Net Fitting consente di creare, visualizzare e addestrare una rete feed-forward a due livelli per risolvere i problemi di data fitting.
Con questa applicazione è possibile:
Importare i dati da un file, dal workspace MATLAB® o utilizzare uno dei set di dati di esempio.
Suddividere i dati in set di addestramento, convalida e prova.
Definire e addestrare una rete neurale.
Valutare la performance della rete utilizzando l'errore quadratico medio e l'analisi della regressione.
Analizzare i risultati utilizzando grafici di visualizzazione, come l'adattamento della regressione o l'istogramma degli errori.
Generare script MATLAB per riprodurre i risultati e personalizzare il processo di addestramento.
Generare funzioni adatte a essere utilizzate con gli strumenti MATLAB Compiler™ e MATLAB Coder™ e adatte a essere esportate in Simulink® per essere utilizzate con Simulink Coder.
Apri l’app Fitting della rete neurale
Barra degli strumenti MATLAB: Nella scheda Apps, sotto Machine Learning and Deep Learning, fare clic sull’icona dell’app.
Nel prompt dei comandi MATLAB: Immettere
nftool
.
Algoritmi
L’app Neural Net Fitting fornisce algoritmi di addestramento integrati che possono essere utilizzati per addestrare la rete neurale.
Algoritmo di addestramento | Descrizione |
---|---|
Levenberg-Marquardt | Aggiornamento dei valori di pesi e bias secondo l'ottimizzazione di Levenberg-Marquardt. L'addestramento Levenberg-Marquardt è spesso l'algoritmo di addestramento più veloce, sebbene richieda più memoria rispetto ad altre tecniche. Per implementare questo algoritmo, l’app Neural Net Fitting utilizza la funzione |
Regolarizzazione bayesiana | La regolarizzazione bayesiana aggiorna i valori di pesi e bias secondo l'ottimizzazione di Levenberg-Marquardt. Minimizza quindi una combinazione di errori quadratici e pesi e determina la combinazione corretta onde produrre una rete che generalizzi in modo corretto. Questo algoritmo richiede in genere più tempo, ma è in grado di generalizzare set di dati rumorosi o di piccole dimensioni in modo utile. Per implementare questo algoritmo, l’app Neural Net Fitting utilizza la funzione |
Retropropagazione a gradiente coniugato scalato | La retropropagazione a gradiente coniugato scalato aggiorna i valori di pesi e bias secondo il metodo del gradiente coniugato scalato. Per problemi più grandi, si consiglia il gradiente coniugato scalare in quanto utilizza calcoli del gradiente più efficienti in termini di memoria rispetto ai calcoli jacobiani utilizzati da Levenberg-Marquardt o dalla regolarizzazione bayesiana. Per implementare questo algoritmo, l’app Neural Net Fitting utilizza la funzione |