slmetric.metric.ResultDetail Class
Namespace: slmetric.metric
Superclasses:
(To be removed) Details about instances of
slmetric.metric.Result
objects
The Metrics Dashboard user interface, metricdashboard
function, slmetric
package API, and corresponding customizations will be removed in a future release. For more information, see Migrating from Metrics Dashboard to Model Maintainability Dashboard.
Description
Details about what the metric engine counts for the
slmetric.metric.Result
object property
Value
.
Construction
Calling the slmetric.Engine.execute
method creates the slmetric.metric.Result
objects, which optionally includes the
slmetric.metric.ResultDetail
objects. Details1 =
slmetric.metric.ResultDetail = (ID, Name)
creates an
slmetric.metric.ResultDetail
object. You must supply the ID and
Name as inputs to the constructor.
Properties
ID
— Unique identifier
character vector
Unique identifier for the entity that the result detail instance counts. This property is read/write.
Data Types: char
Name
— Name of model entity
character vector
Name of model entity that result detail instance counts. This property is read/write.
Data Types: char
Value
— Value of ID
property
double
Scalar value generated by metric algorithm for ID
. This
property is read/write.
Data Types: double
Methods
getGroupIdentifier | (To be removed) Obtain the identifier for a group of
slmetric.metric.ResultDetail objects |
getGroupName | (To be removed) Obtain name for a group of
slmetric.metric.ResultDetail objects |
setGroup | (To be removed) Set name and identifier for group of
slmetric.metric.ResultDetail objects |
Examples
Obtain Clone Group Names and Identifiers
Use the getGroupName
and
getGroupIdentfier
methods to obtain the name and
identifier for a group of clones.
Open the example model.
openExample('slcheck/EnableSubsystemReuseWithCloneExample','supportingfile','ex_clone_detection');
Save the example model to your current working folder.
Call the execute
method. Apply the getMetrics
method for
themathworks.metric.CloneDetection
metric.
metric_engine = slmetric.Engine(); setAnalysisRoot(metric_engine,'Root','ex_clone_detection','RootType','Model'); execute(metric_engine); rc = getMetrics(metric_engine,'mathworks.metrics.CloneDetection');
For each slmetric.metric.Result
object, display the
ComponentPath
. For each
slmetric.metric.ResultDetail
object, display the
clone group name and identifier.
for n=1:length(rc.Results) if rc.Results(n).Value > 0 for m=1:length(rc.Results(n).Details) disp(['ComponentPath: ',rc.Results(n).ComponentPath]); disp(['Group Name: ',rc.Results(n).Details(m).getGroupName]); disp(['Group Identifier: ',rc.Results(n).Details(m).getGroupIdentifier]); end else disp(['No results for ComponentPath: ',rc.Results(n).ComponentPath]); end disp(' '); end
The results show that the model contains one clone group,
CloneGroup1
, which contains two clones.
Set Group Names and Group Identifiers for a Custom Model Metric
Use the setGroup
method to group detailed results.
When you create a custom model metric, you apply this method as part of the
algorithm
method.
Open the sldemo_mdlref_dsm
model.
openExample('sldemo_mdlref_dsm');
Using the createNewMetricClass
function, create a metric class
named DataStoreCount
. This metric counts the number of
Data Store Read and Data Store Write blocks and
groups them together by the corresponding Data Store Memory block. The
createNewMetricClass
function creates a file,
DataStoreCount.m
in the current working folder. The file
contains a constructor and empty metric algorithm method. For this example, make
sure that you are working in a writable folder.
className = 'DataStoreCount';
slmetric.metric.createNewMetricClass(className);
To write the metric algorithm, open the DataStoreCount.m
file
and add the metric to the file. For this example, you can create the metric
algorithm by copying this logic into the DataStoreCount.m
file.
classdef DataStoreCount < slmetric.metric.Metric % Count the number of Data Store Read and Data Store Write % blocks and correlate them across components. methods function this = DataStoreCount() this.ID = 'DataStoreCount'; this.ComponentScope = [Advisor.component.Types.Model, ... Advisor.component.Types.SubSystem]; this.AggregationMode = slmetric.AggregationMode.Sum; this.CompileContext = 'None'; this.Version = 1; this.SupportsResultDetails = true; %Textual information on the metric algorithm this.Name = 'Data store usage'; this.Description = 'Metric that counts the number of Data Store Read and Write'; 'blocks and groups them by the corresponding Data Store Memory block.'; end function res = algorithm(this, component) % Use find_system to get all blocks inside this component. dswBlocks = find_system(getPath(component), ... 'SearchDepth', 1, ... 'BlockType', 'DataStoreWrite'); dsrBlocks = find_system(getPath(component), ... 'SearchDepth', 1, ... 'BlockType', 'DataStoreRead'); % Create a ResultDetail object for each data store read and write block. % Group ResultDetails by the data store name. details1 = slmetric.metric.ResultDetail.empty(); for i=1:length(dswBlocks) details1(i) = slmetric.metric.ResultDetail(getfullname(dswBlocks{i}),... get_param(dswBlocks{i}, 'Name')); groupID = get_param(dswBlocks{i},'DataStoreName'); groupName = get_param(dswBlocks{i},'DataStoreName'); details1(i).setGroup(groupID, groupName); details1(i).Value = 1; end details2 = slmetric.metric.ResultDetail.empty(); for i=1:length(dsrBlocks) details2(i) = slmetric.metric.ResultDetail(getfullname(dsrBlocks{i}),... get_param(dsrBlocks{i}, 'Name')); groupID = get_param(dsrBlocks{i},'DataStoreName'); groupName = get_param(dsrBlocks{i},'DataStoreName'); details2(i).setGroup(groupID, groupName); details2(i).Value = 1; end res = slmetric.metric.Result(); res.ComponentID = component.ID; res.MetricID = this.ID; res.Value = length(dswBlocks)+ length(dsrBlocks); res.Details = [details1 details2]; end end end
In the DataStoreCount
metric class, the
SupportsResultDetail
method is set to true. The metric
algorithm contains the logic for the setGroup
method.
Now that your new model metric is defined in DataStoreCount.m
,
register the new
metric.
[id_metric,err_msg] = slmetric.metric.registerMetric(className);
To collect metric data on models, use instances of
slmetric.Engine
. Using the getMetrics
method, specify the metric that you want to collect. For this example, specify the
data store count metric for the sldemo_mdlref_dsm
model.
Create a metric engine object and set the analysis root.
metric_engine = slmetric.Engine(); setAnalysisRoot(metric_engine,'Root','sldemo_mdlref_dsm',... 'RootType','Model');
Collect metric data for the Data Store count metric.
execute(metric_engine); rc=getMetrics(metric_engine, id_metric);
For each slmetric.metric.Result
object, display the
ComponentPath
. For each
slmetric.metric.ResultDetails
object, display the Data Store
group name and identifier.
for n=1:length(rc.Results) if rc.Results(n).Value > 0 for m=1:length(rc.Results(n).Details) disp(['ComponentPath: ',rc.Results(n).ComponentPath]); disp(['Group Name: ',rc.Results(n).Details(m).getGroupName]); disp(['Group Identifier: ',rc.Results(n).Details(m).getGroupIdentifier]); end else disp(['No results for ComponentPath: ',rc.Results(n).ComponentPath]); end disp(' '); end
Here are the results.
ComponentPath: sldemo_mdlref_dsm Group Name: ErrorCond Group Identifier: ErrorCond No results for ComponentPath: sldemo_mdlref_dsm/A No results for ComponentPath: sldemo_mdlref_dsm/A1 No results for ComponentPath: sldemo_mdlref_dsm/More Info1 ComponentPath: sldemo_mdlref_dsm_bot Group Name: RefSignalVal Group Identifier: RefSignalVal ComponentPath: sldemo_mdlref_dsm_bot2 Group Name: ErrorCond Group Identifier: ErrorCond ComponentPath: sldemo_mdlref_dsm_bot/PositiveSS Group Name: RefSignalVal Group Identifier: RefSignalVal ComponentPath: sldemo_mdlref_dsm_bot/NegativeSS Group Name: RefSignalVal Group Identifier: RefSignalVal
For this example, unregister the data store count metric.
slmetric.metric.unregisterMetric(id_metric);
Close the model.
bdclose('sldemo_mdlref_dsm');
Version History
Introduced in R2017bR2022a: Metrics Dashboard will be removed
The Metrics Dashboard user interface, metricdashboard
function, slmetric
package API, and corresponding customizations will be removed in a future release. For more information, see Migrating from Metrics Dashboard to Model Maintainability Dashboard.
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: United States.
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)