acsch
Symbolic inverse hyperbolic cosecant function
Syntax
Description
Examples
Inverse Hyperbolic Cosecant Function for Numeric and Symbolic Arguments
Depending on its arguments, acsch returns
floating-point or exact symbolic results.
Compute the inverse hyperbolic cosecant function for these numbers. Because these
numbers are not symbolic objects, acsch returns floating-point
results.
A = acsch([-2*i, 0, 2*i/sqrt(3), 1/2, i, 3])
A = 0.0000 + 0.5236i Inf + 0.0000i 0.0000 - 1.0472i... 1.4436 + 0.0000i 0.0000 - 1.5708i 0.3275 + 0.0000i
Compute the inverse hyperbolic cosecant function for the numbers converted to
symbolic objects. For many symbolic (exact) numbers, acsch returns
unresolved symbolic calls.
symA = acsch(sym([-2*i, 0, 2*i/sqrt(3), 1/2, i, 3]))
symA = [ (pi*1i)/6, Inf, -(pi*1i)/3, asinh(2), -(pi*1i)/2, asinh(1/3)]
Use vpa to approximate symbolic results with floating-point
numbers:
vpa(symA)
ans = [ 0.52359877559829887307710723054658i,... Inf,... -1.0471975511965977461542144610932i,... 1.4436354751788103424932767402731,... -1.5707963267948966192313216916398i,... 0.32745015023725844332253525998826]
Plot Inverse Hyperbolic Cosecant Function
Plot the inverse hyperbolic cosecant function on the interval from -10 to 10.
syms x fplot(acsch(x),[-10 10]) grid on

Handle Expressions Containing Inverse Hyperbolic Cosecant Function
Many functions, such as diff,
int, taylor, and
rewrite, can handle expressions containing
acsch.
Find the first and second derivatives of the inverse hyperbolic cosecant function:
syms x diff(acsch(x), x) diff(acsch(x), x, x)
ans = -1/(x^2*(1/x^2 + 1)^(1/2)) ans = 2/(x^3*(1/x^2 + 1)^(1/2)) - 1/(x^5*(1/x^2 + 1)^(3/2))
Find the indefinite integral of the inverse hyperbolic cosecant function:
int(acsch(x), x)
ans = x*asinh(1/x) + asinh(x)*sign(x)
Find the Taylor series expansion of acsch(x) around x =
Inf:
taylor(acsch(x), x, Inf)
ans = 1/x - 1/(6*x^3) + 3/(40*x^5)
Rewrite the inverse hyperbolic cosecant function in terms of the natural logarithm:
rewrite(acsch(x), 'log')
ans = log((1/x^2 + 1)^(1/2) + 1/x)
Input Arguments
Version History
Introduced before R2006a