tanh
Symbolic hyperbolic tangent function
Syntax
Description
Examples
Hyperbolic Tangent Function for Numeric and Symbolic Arguments
Depending on its arguments, tanh returns
floating-point or exact symbolic results.
Compute the hyperbolic tangent function for these numbers. Because these numbers are not
symbolic objects, tanh returns floating-point results.
A = tanh([-2, -pi*i, pi*i/6, pi*i/3, 5*pi*i/7])
A = -0.9640 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.5774i... 0.0000 + 1.7321i 0.0000 - 1.2540i
Compute the hyperbolic tangent function for the numbers converted to symbolic objects.
For many symbolic (exact) numbers, tanh returns unresolved symbolic
calls.
symA = tanh(sym([-2, -pi*i, pi*i/6, pi*i/3, 5*pi*i/7]))
symA = [ -tanh(2), 0, (3^(1/2)*1i)/3, 3^(1/2)*1i, -tanh((pi*2i)/7)]
Use vpa to approximate symbolic results with floating-point
numbers:
vpa(symA)
ans = [ -0.96402758007581688394641372410092,... 0,... 0.57735026918962576450914878050196i,... 1.7320508075688772935274463415059i,... -1.2539603376627038375709109783365i]
Plot Hyperbolic Tangent Function
Plot the hyperbolic tangent function on the interval from to .
syms x fplot(tanh(x),[-pi pi]) grid on

Handle Expressions Containing Hyperbolic Tangent Function
Many functions, such as diff,
int, taylor, and rewrite,
can handle expressions containing tanh.
Find the first and second derivatives of the hyperbolic tangent function:
syms x diff(tanh(x), x) diff(tanh(x), x, x)
ans = 1 - tanh(x)^2 ans = 2*tanh(x)*(tanh(x)^2 - 1)
Find the indefinite integral of the hyperbolic tangent function:
int(tanh(x), x)
ans = log(cosh(x))
Find the Taylor series expansion of tanh(x):
taylor(tanh(x), x)
ans = (2*x^5)/15 - x^3/3 + x
Rewrite the hyperbolic tangent function in terms of the exponential function:
rewrite(tanh(x), 'exp')
ans = (exp(2*x) - 1)/(exp(2*x) + 1)
Input Arguments
Version History
Introduced before R2006a