asech
Symbolic inverse hyperbolic secant function
Syntax
Description
Examples
Inverse Hyperbolic Secant Function for Numeric and Symbolic Arguments
Depending on its arguments, asech returns
floating-point or exact symbolic results.
Compute the inverse hyperbolic secant function for these numbers. Because these
numbers are not symbolic objects, asech returns floating-point
results.
A = asech([-2, 0, 2/sqrt(3), 1/2, 1, 3])
A = 0.0000 + 2.0944i Inf + 0.0000i 0.0000 + 0.5236i... 1.3170 + 0.0000i 0.0000 + 0.0000i 0.0000 + 1.2310i
Compute the inverse hyperbolic secant function for the numbers converted to symbolic
objects. For many symbolic (exact) numbers, asech returns
unresolved symbolic calls.
symA = asech(sym([-2, 0, 2/sqrt(3), 1/2, 1, 3]))
symA = [ (pi*2i)/3, Inf, (pi*1i)/6, acosh(2), 0, acosh(1/3)]
Use vpa to approximate symbolic results with floating-point
numbers:
vpa(symA)
ans = [ 2.0943951023931954923084289221863i,... Inf,... 0.52359877559829887307710723054658i,... 1.316957896924816708625046347308,... 0,... 1.230959417340774682134929178248i]
Plot Inverse Hyperbolic Secant Function
Plot the inverse hyperbolic secant function on the interval from 0 to 1.
syms x fplot(asech(x),[0 1]) grid on

Handle Expressions Containing Inverse Hyperbolic Secant Function
Many functions, such as diff,
int, taylor, and
rewrite, can handle expressions containing
asech.
Find the first and second derivatives of the inverse hyperbolic secant function.
Simplify the second derivative by using simplify.
syms x diff(asech(x), x) simplify(diff(asech(x), x, x))
ans = -1/(x^2*(1/x - 1)^(1/2)*(1/x + 1)^(1/2)) ans = -(2*x^2 - 1)/(x^5*(1/x - 1)^(3/2)*(1/x + 1)^(3/2))
Find the indefinite integral of the inverse hyperbolic secant function:
int(asech(x), x)
ans = atan(1/((1/x - 1)^(1/2)*(1/x + 1)^(1/2))) + x*acosh(1/x)
Find the Taylor series expansion of asech(x) around x =
Inf:
taylor(asech(x), x, Inf)
ans = (pi*1i)/2 - 1i/x - 1i/(6*x^3) - 3i/(40*x^5)
Rewrite the inverse hyperbolic secant function in terms of the natural logarithm:
rewrite(asech(x), 'log')
ans = log((1/x - 1)^(1/2)*(1/x + 1)^(1/2) + 1/x)
Input Arguments
Version History
Introduced before R2006a