Feature Detection and Extraction

Image registration, interest point detection, extracting feature descriptors, and point feature matching

Local features and their descriptors are the building blocks of many computer vision algorithms. Their applications include image registration, object detection and classification, tracking, and motion estimation. These algorithms use local features to better handle scale changes, rotation, and occlusion. Computer Vision Toolbox™ algorithms include the FAST, Harris, and Shi & Tomasi corner detectors, and the SURF, KAZE, and MSER blob detectors. The toolbox includes the SURF, FREAK, BRISK, LBP, ORB, and HOG descriptors. You can mix and match the detectors and the descriptors depending on the requirements of your application. You can also extract features using a pretrained convolutional neural network which applies techniques from the field of deep learning.

Featured Examples