unet3dLayers
(To be removed) Create 3-D U-Net layers for semantic segmentation of volumetric images
unet3dLayers
will be removed in a future release. Use the unet3d
function
instead. For more information, see Version History.
Syntax
Description
returns a 3-D U-Net network. lgraph
= unet3dLayers(inputSize
,numClasses
)unet3dLayers
includes a pixel classification
layer in the network to predict the categorical label for each pixel in an input volumetric
image.
Use unet3dLayers
to create the network architecture for 3-D U-Net.
Train the network using the Deep Learning Toolbox™ function trainNetwork
(Deep Learning Toolbox).
[
also returns the size of an output volumetric image from the 3-D U-Net network.lgraph
,outputSize
] = unet3dLayers(inputSize
,numClasses
)
[___] = unet3dLayers(
specifies options using one or more name-value pair arguments in addition to the input
arguments in previous syntax.inputSize
,numClasses
,Name,Value
)
Examples
Input Arguments
Output Arguments
More About
Tips
Use
'same'
padding in convolution layers to maintain the same data size from input to output and enable the use of a broad set of input image sizes.Use patch-based approaches for seamless segmentation of large images. You can extract image patches by using the
randomPatchExtractionDatastore
function.Use
'valid'
padding in convolution layers to prevent border artifacts while you use patch-based approaches for segmentation.
References
[1] Çiçek, Ö., A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger. "3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation." Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016. MICCAI 2016. Lecture Notes in Computer Science. Vol. 9901, pp. 424–432. Springer, Cham.
Version History
Introduced in R2019bSee Also
unet
| unet3d
| trainnet
(Deep Learning Toolbox) | semanticseg
| evaluateSemanticSegmentation
Topics
- Getting Started with Semantic Segmentation Using Deep Learning
- Deep Learning in MATLAB (Deep Learning Toolbox)