unet3dLayers
(To be removed) Create 3-D U-Net layers for semantic segmentation of volumetric images
unet3dLayers will be removed in a future release. Use the unet3d function
instead. For more information, see Version History.
Syntax
Description
returns a 3-D U-Net network. lgraph = unet3dLayers(inputSize,numClasses)unet3dLayers includes a pixel classification
layer in the network to predict the categorical label for each pixel in an input volumetric
image.
Use unet3dLayers to create the network architecture for 3-D U-Net.
Train the network using the Deep Learning Toolbox™ function trainNetwork (Deep Learning Toolbox).
[
also returns the size of an output volumetric image from the 3-D U-Net network.lgraph,outputSize] = unet3dLayers(inputSize,numClasses)
[___] = unet3dLayers(
specifies options using one or more name-value pair arguments in addition to the input
arguments in previous syntax.inputSize,numClasses,Name,Value)
Examples
Input Arguments
Name-Value Arguments
Output Arguments
More About
Tips
Use
'same'padding in convolution layers to maintain the same data size from input to output and enable the use of a broad set of input image sizes.Use patch-based approaches for seamless segmentation of large images. You can extract image patches by using the
randomPatchExtractionDatastorefunction.Use
'valid'padding in convolution layers to prevent border artifacts while you use patch-based approaches for segmentation.
References
[1] Çiçek, Ö., A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger. "3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation." Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016. MICCAI 2016. Lecture Notes in Computer Science. Vol. 9901, pp. 424–432. Springer, Cham.
Version History
Introduced in R2019bSee Also
unet | unet3d | trainnet (Deep Learning Toolbox) | semanticseg | evaluateSemanticSegmentation
Topics
- Get Started with Semantic Segmentation Using Deep Learning
- Deep Learning in MATLAB (Deep Learning Toolbox)