Train Network on Image and Feature Data
This example shows how to train a network that classifies handwritten digits using both image and feature input data.
Load Training Data
Load the digits images, labels, and clockwise rotation angles.
load DigitsDataTrain
To train a network with multiple inputs using the trainnet
function, create a single datastore that contains the training predictors and responses. To convert numeric arrays to datastores, use arrayDatastore
. Then, use the combine
function to combine them into a single datastore.
dsX1Train = arrayDatastore(XTrain,IterationDimension=4); dsX2Train = arrayDatastore(anglesTrain); dsTTrain = arrayDatastore(labelsTrain); dsTrain = combine(dsX1Train,dsX2Train,dsTTrain);
Display 20 random training images.
numObservationsTrain = numel(labelsTrain); idx = randperm(numObservationsTrain,20); figure tiledlayout("flow"); for i = 1:numel(idx) nexttile imshow(XTrain(:,:,:,idx(i))) title("Angle: " + anglesTrain(idx(i))) end
Define Network Architecture
Define the following network.
For the image input, specify an image input layer with size matching the input data.
For the feature input, specify a feature input layer with size matching the number of input features.
For the image input branch, specify a convolution, batch normalization, and ReLU layer block, where the convolutional layer has 16 5-by-5 filters.
To convert the output of the batch normalization layer to a feature vector, include a fully connected layer of size 50.
To concatenate the output of the first fully connected layer with the feature input, flatten the
"SSCB"
(spatial, spatial, channel, batch) output of the fully connected layer so that it has format"CB"
using a flatten layer.Concatenate the output of the flatten layer with the feature input along the first dimension (the channel dimension).
For classification output, include a fully connected layer with output size matching the number of classes, followed by a softmax layer.
Create an empty neural network.
net = dlnetwork;
Create a layer array containing the main branch of the network and add them to the network.
[h,w,numChannels,numObservations] = size(XTrain); numFeatures = 1; classNames = categories(labelsTrain); numClasses = numel(classNames); imageInputSize = [h w numChannels]; filterSize = 5; numFilters = 16; layers = [ imageInputLayer(imageInputSize,Normalization="none") convolution2dLayer(filterSize,numFilters) batchNormalizationLayer reluLayer fullyConnectedLayer(50) flattenLayer concatenationLayer(1,2,Name="cat") fullyConnectedLayer(numClasses) softmaxLayer]; net = addLayers(net,layers);
Add a feature input layer to the network and connect it to the second input of the concatenation layer.
featInput = featureInputLayer(numFeatures,Name="features"); net = addLayers(net,featInput); net = connectLayers(net,"features","cat/in2");
Visualize the network in a plot.
figure plot(net)
Specify Training Options
Specify the training options. Choosing among the options requires empirical analysis. To explore different training option configurations by running experiments, you can use the Experiment Manager app.
Train using the SGDM optimizer.
Train for 15 epochs.
Train with a learning rate of 0.01.
Display the training progress in a plot and monitor the accuracy metric.
Suppress the verbose output.
options = trainingOptions("sgdm", ... MaxEpochs=15, ... InitialLearnRate=0.01, ... Plots="training-progress", ... Metrics="accuracy", ... Verbose=0);
Train Network
Train the neural network using the trainnet
function. For classification, use cross-entropy loss. By default, the trainnet
function uses a GPU if one is available. Using a GPU requires a Parallel Computing Toolbox™ license and a supported GPU device. For information on supported devices, see GPU Computing Requirements (Parallel Computing Toolbox). Otherwise, the function uses the CPU. To specify the execution environment, use the ExecutionEnvironment
training option.
net = trainnet(dsTrain,net,"crossentropy",options);
Test Network
Test the classification accuracy of the network by comparing the predictions on a test set with the true labels.
Load the test data.
load DigitsDataTest
Make predictions using the minibatchpredict
function and convert the scores to labels using the scores2label
function. By default, the minibatchpredict
function uses a GPU if one is available.
scores = minibatchpredict(net,XTest,anglesTest); YTest = scores2label(scores,classNames);
Visualize the predictions in a confusion chart.
figure confusionchart(labelsTest,YTest)
Evaluate the classification accuracy.
accuracy = mean(YTest == labelsTest)
accuracy = 0.9852
View some of the images with their predictions.
idx = randperm(size(XTest,4),9); figure tiledlayout(3,3) for i = 1:9 nexttile I = XTest(:,:,:,idx(i)); imshow(I) label = string(YTest(idx(i))); title("Predicted Label: " + label) end
See Also
dlnetwork
| dlfeval
| dlarray
| fullyConnectedLayer
| Deep Network
Designer | featureInputLayer
| minibatchqueue
| onehotencode
| onehotdecode
Related Examples
- Create Simple Deep Learning Neural Network for Classification
- Train Convolutional Neural Network for Regression