signalTimeFeatureExtractor
Description
Use signalTimeFeatureExtractor
to extract time-domain
features from a signal. You can use the extracted features to train a machine learning model
or a deep learning network.
Creation
Description
creates a
sFE
= signalTimeFeatureExtractorsignalTimeFeatureExtractor
object with default property values.
specifies nondefault property values of the sFE
= signalTimeFeatureExtractor(Name=Value
)signalTimeFeatureExtractor
object. For example, signalTimeFeatureExtractor(FeatureFormat="table")
sets the output format of the generated features to a table.
Properties
Main Properties
FrameSize
— Number of samples in a frame
positive integer
Number of samples in a frame, specified as a positive integer. The object divides the signal
into frames of the specified length and extracts features for
each frame. If you do not specify
FrameSize
, or if you specify
FrameSize
as empty, the object
extracts features for the whole signal.
Data Types: single
| double
FrameRate
— Number of samples between start of frames
positive integer
Number of samples between the start of frames, specified as a positive integer. The frame rate
determines the distance in samples between the starting points
of frames. If you specify FrameRate
, then
you must also specify FrameSize
. If you do
not specify FrameRate
or
FrameOverlapLength
, then
FrameRate
is assumed to be
equal to FrameSize
. You cannot specify
FrameRate
and
FrameOverlapLength
simultaneously.
Data Types: single
| double
FrameOverlapLength
— Number of overlapping samples between consecutive frames
positive integer
Number of overlapping samples between consecutive frames, specified as a positive
integer. FrameOverlapLength
must be less than or equal to the frame
size. If you specify FrameOverlapLength
, then you must also specify
FrameSize
. You cannot specify
FrameOverlapLength
and FrameRate
simultaneously.
Data Types: single
| double
SampleRate
— Sample rate
[]
(default) | positive scalar
Input sample rate, specified as a positive scalar in hertz.
Data Types: single
| double
FeatureFormat
— Format of generated features
"matrix"
(default) | "table"
Format of generated features, specified as "matrix"
or
"table"
. The extract
function returns features as one of these:
matrix
— Matrix with columns corresponding to feature values.table
— Table with each table variable corresponding to a feature value.
Data Types: char
| string
IncompleteFrameRule
— Rule to handle incomplete frames
"drop"
(default) | "zeropad"
Rule to handle incomplete frames, specified as "drop"
or
"zeropad"
. This rule applies when the current frame size is less
than the specified FrameSize
property.
drop
— Drop the incomplete frame and do not use it to compute features.zeropad
— Zero-pad the incomplete frame and use it to compute features.
Data Types: char
| string
Features to Extract
Mean
— Option to extract mean
false
(default) | true
Option to extract the mean, specified as true
or
false
. If you specify Mean
as true, the
object extracts the mean and appends the value to the features returned by the
extract
function.
Data Types: logical
RMS
— Option to extract root mean square
false
(default) | true
Option to extract the root mean square (RMS), specified as true
or false
. If you specify RMS
as true, the
object extracts the RMS and appends the value to the features returned by the
extract
function.
Data Types: logical
StandardDeviation
— Option to extract standard deviation
false
(default) | true
Option to extract the standard deviation, specified as true
or
false
. If you specify StandardDeviation
as
true, the object extracts the standard deviation and appends the value to the features
returned by the extract
function.
Data Types: logical
ShapeFactor
— Option to extract shape factor
false
(default) | true
Option to extract the shape factor, specified as true
or
false
. The shape factor is equal to the RMS value divided by the
mean absolute value of the signal. If you specify ShapeFactor
as
true, the object extracts the shape factor and appends the value to the features
returned by the extract
function.
Data Types: logical
SNR
— Option to extract signal-to-noise ratio
false
(default) | true
Option to extract the signal-to-noise ratio (SNR), specified as
true
or false
. If you specify
SNR
as true, the object extracts the SNR and appends the value
to the features returned by the extract
function.
Data Types: logical
THD
— Option to extract total harmonic distortion
false
(default) | true
Option to extract the total harmonic distortion (THD), specified as
true
or false
. If you specify
THD
as true, the object extracts the THD and appends the value
to the features returned by the extract
function.
Data Types: logical
SINAD
— Option to extract signal to noise and distortion ratio
false
(default) | true
Option to extract the signal to noise and distortion ratio (SINAD) in decibels,
specified as true
or false
. If you specify
Sinad
as true, the object extracts the SINAD and appends the
value to the features returned by the extract
function.
Data Types: logical
PeakValue
— Option to extract peak value
false
(default) | true
Option to extract the peak value, specified as true
or
false
. The peak value corresponds to the maximum absolute value
of the signal. If you specify PeakValue
as true, the object
extracts the peak and appends the value to the features returned by the
extract
function.
Data Types: logical
CrestFactor
— Option to extract crest factor
false
(default) | true
Option to extract the crest factor, specified as true
or
false
. The crest factor is equal to the peak value divided by the
RMS. If you specify CrestFactor
as true, the object extracts the
crest factor and appends the value to the features returned by the
extract
function.
Data Types: logical
ClearanceFactor
— Option to extract clearance factor
false
(default) | true
Option to extract the clearance factor, specified as true
or
false
. The clearance factor is equal to the peak value divided by
the squared mean of the square roots of the absolute amplitude. If you specify
ClearanceFactor
as true, the object extracts the clearance
factor and appends the value to the features returned by the
extract
function.
Data Types: logical
ImpulseFactor
— Option to extract impulse factor
false
(default) | true
Option to extract the impulse factor, specified as true
or
false
. The impulse factor is equal to the peak value divided by
the mean of the absolute amplitude. If you specify ImpulseFactor
as true, the object extracts the impulse factor and appends the value to the features
returned by the extract
function.
Data Types: logical
Object Functions
extract | Extract time-domain or frequency-domain features |
generateMATLABFunction | Create MATLAB function compatible with C/C++ code generation |
Examples
Extract Time-Domain Features from Data Set
Extract time-domain features from electromyographic (EMG) data for later use in a machine learning workflow to classify forearm motions. The files are available at this location: https://ssd.mathworks.com/supportfiles/SPT/data/MyoelectricData.zip.
This example uses EMG signals collected from the forearms of 30 subjects [1]. The data set consists of 720 files. Each subject participated in four testing sessions, and performed six trials of different forearm motions per session. Download and unzip the files into your temporary directory.
localfile = matlab.internal.examples.downloadSupportFile("SPT","data/MyoelectricData.zip"); datasetFolder = fullfile(tempdir,"MyoelectricData"); unzip(localfile,datasetFolder)
Each file contains an eight-channel EMG signal that represents the activation of eight forearm muscles during a series of motions. The sample rate is 1000 Hz. Create a signalDatastore
that points to the data set folder.
fs = 1000; sds = signalDatastore(datasetFolder,IncludeSubfolders=true);
For this example, analyze only the last (sixth) trial of each session. Use the endsWith
function to find the indices that correspond to these files. Create a new datastore that contains this subset of signals.
p = endsWith(sds.Files,"6d.mat");
sdssub = subset(sds,p);
data = readall(sdssub);
Create a signalTimeFeatureExtractor
object to extract the mean, root mean square (RMS), and peak values from the EMG signals. Call the extract
function to extract the specified features. Plot the peak values for the second and eighth EMG channels.
sFE = signalTimeFeatureExtractor(SampleRate=fs,Mean=true,RMS=true,PeakValue=true); M = []; F = []; for i = 1:length(sdssub.Files) M{i,1} = extract(sFE,data{i}); end for k = 1:30 peak2 = M{k,1}(:,3,2); peak8 = M{k,1}(:,3,8); F(k,1) = peak2; F(k,2) = peak8; end bar(F) xlabel("Subject") ylabel("EMG Peak values (mV)") legend(["Channel 2";"Channel 8"])
References
[1] Chan, Adrian D.C., and Geoffrey C. Green. 2007. "Myoelectric Control Development Toolbox." Paper presented at 30th Conference of the Canadian Medical & Biological Engineering Society, Toronto, Canada, 2007.
Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
This function fully supports GPU arrays. For more information, see Run MATLAB Functions on a GPU (Parallel Computing Toolbox).
Version History
Introduced in R2021aR2023a: Use gpuArray
inputs
The signalTimeFeatureExtractor
object supports gpuArray
inputs. You
must have Parallel Computing Toolbox™ to use this functionality.
Apri esempio
Si dispone di una versione modificata di questo esempio. Desideri aprire questo esempio con le tue modifiche?
Comando MATLAB
Hai fatto clic su un collegamento che corrisponde a questo comando MATLAB:
Esegui il comando inserendolo nella finestra di comando MATLAB. I browser web non supportano i comandi MATLAB.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)