Update Network Parameters After Code Generation
This example shows how to update learnable and state parameters of deep learning networks
without regenerating code for the network. You can update the network parameters for
SeriesNetwork, DAGNetwork and
dlnetwork.
Parameter update supports MEX and standalone code generation for the Intel® Math Kernel Library for Deep Neural Networks (MKL-DNN) and the ARM® Compute libraries.
Create an Entry-Point Function
Write an entry-point function in MATLAB® that:
Uses the
coder.loadDeepLearningNetworkfunction to construct and set up a convolutional neural network (CNN) object. For more information, see Load Pretrained Networks for Code Generation.Calls
predict(Deep Learning Toolbox) to predict the responses.
For example:
function out = mLayer(in, matFile) myNet = coder.loadDeepLearningNetwork(coder.const(matFile)); out = myNet.predict(in);
Create a Network
The network used in this example requires input images of size 4-by-5-by-3. Create sample network inputs of the same size format as the network inputs.
inputSize = [4 5 3]; im = dlarray(rand(inputSize, 'single'), 'SSCB');
Define the network architecture.
outSize = 6;
layers = [
imageInputLayer(inputSize,'Name','input','Normalization','none')
convolution2dLayer([3 3], 5, 'Name', 'conv-1')
batchNormalizationLayer('Name', 'batchNorm')
reluLayer('Name','relu1')
transposedConv2dLayer([2 2], 5, 'Name', 'transconv')
convolution2dLayer([2 2], 5, 'Name', 'conv2')
reluLayer('Name','relu2')
fullyConnectedLayer(outSize, 'Name', 'fc3')
];
Create an initialized dlnetwork object from the layer
graph.
rng(0); dlnet1 = dlnetwork(layers); save('trainedNet.mat', 'dlnet1');
Code Generation by Using codegen
To configure build settings such as output file name, location, and type, you create coder configuration objects. To create the objects, use the
coder.configfunction.To specify code generation parameters for MKL-DNN, set the
DeepLearningConfigproperty to acoder.MklDNNConfigobject that you create withcoder.DeepLearningConfigcfg = coder.config('mex'); cfg.TargetLang = 'C++'; cfg.DeepLearningConfig = coder.DeepLearningConfig('TargetLibrary', 'mkldnn')
Specify the inputs.
cnnMatFile = fullfile(pwd, 'trainedNet.mat'); inputArgs = {im, coder.Constant(cnnMatFile)};Run the
codegencommand. Thecodegencommand generates CUDA® code from themLayers.mMATLAB entry-point function.codegen -config cfg mLayer -args inputArgs -report
Run the Generated MEX
Call predict on the input image and compare the results with MATLAB.
out = mLayer_mex(im,cnnMatFile) out_MATLAB = mLayer(im,cnnMatFile)
out1 =
6(C) x 1(B) single dlarray
-0.0064
-0.1422
-0.0897
0.2223
0.0329
0.0365
out_MATLAB =
6(C) x 1(B) single dlarray
-0.0064
-0.1422
-0.0897
0.2223
0.0329
0.0365
Update Network with Different Learnable Parameters
Re-initialize dlnetwork to update learnables to different
values.
rng(10); dlnet2 = dlnetwork(layers); save('trainedNet.mat', 'dlnet2');
Use the coder.regenerateDeepLearningParameters function to
regenerate the bias files based on the new learnables and states of the network.
The first input to the coder.regenerateDeepLearningParameters
function is a SeriesNetwork, DAGNetwork or
dlnetwork object. The second argument is the path to the network
parameter information file emitted during code generation. You can optionally specify
the NetworkName=MYNET name-value pair to specify the name of the C++
class for the network in the generated code.
codegenDir = fullfile(pwd, 'codegen/mex/mLayer');
networkFileNames = (coder.regenerateDeepLearningParameters(dlnet2, codegenDir))'
The coder.regenerateDeepLearningParameters function returns a
cell-array of files containing network learnables and states.
networkFileNames =
8×1 cell array
{'cnn_trainedNet0_0_conv-1_b.bin' }
{'cnn_trainedNet0_0_conv-1_w.bin' }
{'cnn_trainedNet0_0_conv2_b.bin' }
{'cnn_trainedNet0_0_conv2_w.bin' }
{'cnn_trainedNet0_0_fc3_b.bin' }
{'cnn_trainedNet0_0_fc3_w.bin' }
{'cnn_trainedNet0_0_transconv_b.bin'}
{'cnn_trainedNet0_0_transconv_w.bin'}
Note
For MEX workflows, when the generated MEX and the associated
codegen folder is moved from one location to another,
coder.regenerateDeepLearningParameters cannot regenerate
files containing network learnables and states parameters in the new location. Set
the 'OverrideParameterFiles' parameter of
coder.regenerateDeepLearningParameters to true to allow the
coder.regenerateDeepLearningParameters function to regenerate
files containing network learnables and states parameters in the original
codegen location.
For standalone workflows,
coder.regenerateDeepLearningParameters can regenerate files
containing network learnables and states parameters in the new location
Run the Generated MEX with Updated Learnables
Call predict on the input image and compare the results with MATLAB.
clear mLayer_mex;
outNew = mLayer_mex(im,cnnMatFile)
outNew_MATLAB = mLayer(im,cnnMatFile)
outNew =
6(C) x 1(B) single dlarray
0.1408
-0.0080
0.0342
-0.0065
0.1843
0.0799
outNew_MATLAB =
6(C) x 1(B) single dlarray
0.1408
-0.0080
0.0342
-0.0065
0.1843
0.0799Limitations
Only the network learnables and states can be updated by using the
coder.regenerateDeepLearningParameters function. For
modifications that the code generator does not support, an error message is thrown. For
example, using coder.regenerateDeepLearningParameters after changing
the scale factor of a leaky ReLU layer throws the following error message as scale
factor is not a network learnable.
Network architecture has been modified since the last code generation. Unable to accommodate the provided network in the generated code. Regenerate code for the provided network to reflect changes in the network. For more information, see Limitations to Regenerating Network Parameters After Code Generation.
See Also
Functions
Objects
SeriesNetwork(Deep Learning Toolbox) |DAGNetwork(Deep Learning Toolbox) |dlarray(Deep Learning Toolbox) |dlnetwork(Deep Learning Toolbox)