Main Content

Pattern recognition

Addestrare una rete neurale a generalizzare partendo da input di esempio e dalle loro classi, addestrare autoencoder

App

Neural Net Pattern RecognitionRisolve il problema del pattern recognition utilizzando reti feed-forward a due livelli

Classi

AutoencoderAutoencoder class

Funzioni

espandi tutto

nprtoolApre l’app Neural Net Pattern Recognition
viewVisualizzazione della rete neurale superficiale
trainAutoencoderTrain an autoencoder
trainSoftmaxLayerTrain a softmax layer for classification
decodeDecode encoded data
encodeEncode input data
predictReconstruct the inputs using trained autoencoder
stackStack encoders from several autoencoders together
networkConvert Autoencoder object into network object
patternnetGenera una rete di pattern recognition
lvqnetLearning vector quantization neural network
trainAddestra una rete neurale superficiale
trainlmRetropropagazione di Levenberg-Marquardt
trainbrBayesian regularization backpropagation
trainscgRetropropagazione a gradiente coniugato scalato
trainrpResilient backpropagation
mseFunzione di performance dell’errore quadratico medio normalizzato
rocReceiver operating characteristic
plotconfusionPlot classification confusion matrix
ploterrhistPlot error histogram
plotperformTraccia la performance della rete
plotregressionTraccia la regressione lineare
plotrocTraccia la caratteristica operativa del ricevitore
plottrainstateTraccia i valori dello stato di addestramento
crossentropyNeural network performance
genFunctionGenerate MATLAB function for simulating shallow neural network

Esempi e istruzioni

Progettazione base

Scalabilità ed efficienza dell’addestramento

Soluzioni ottimali

Classificazione

  • Crab Classification
    This example illustrates using a neural network as a classifier to identify the sex of crabs from physical dimensions of the crab.
  • Wine Classification
    This example illustrates how a pattern recognition neural network can classify wines by winery based on its chemical characteristics.
  • Cancer Detection
    This example shows how to train a neural network to detect cancer using mass spectrometry data on protein profiles.
  • Character Recognition
    This example illustrates how to train a neural network to perform simple character recognition.

Autoencoder

Concetti