Pattern recognition
Addestrare una rete neurale a generalizzare partendo da input di esempio e dalle loro classi, addestrare autoencoder
App
Neural Net Pattern Recognition | Risolve il problema del pattern recognition utilizzando reti feed-forward a due livelli |
Classi
Autoencoder | Autoencoder class |
Funzioni
Esempi e istruzioni
Progettazione base
- Pattern recognition con una rete neurale superficiale
Utilizzare una rete neurale superficiale per il pattern recognition. - Deploy Shallow Neural Network Functions
Simulate and deploy trained shallow neural networks using MATLAB® tools. - Deploy Training of Shallow Neural Networks
Learn how to deploy training of shallow neural networks.
Scalabilità ed efficienza dell’addestramento
- Shallow Neural Networks with Parallel and GPU Computing
Use parallel and distributed computing to speed up neural network training and simulation and handle large data. - Automatically Save Checkpoints During Neural Network Training
Save intermediate results to protect the value of long training runs.
Soluzioni ottimali
- Choose Neural Network Input-Output Processing Functions
Preprocess inputs and targets for more efficient training. - Configure Shallow Neural Network Inputs and Outputs
Learn how to manually configure the network before training using theconfigure
function. - Divide Data for Optimal Neural Network Training
Use functions to divide the data into training, validation, and test sets. - Choose a Multilayer Neural Network Training Function
Comparison of training algorithms on different problem types. - Improve Shallow Neural Network Generalization and Avoid Overfitting
Learn methods to improve generalization and prevent overfitting. - Train Neural Networks with Error Weights
Learn how to use error weighting when training neural networks. - Normalize Errors of Multiple Outputs
Learn how to fit output elements with different ranges of values.
Classificazione
- Crab Classification
This example illustrates using a neural network as a classifier to identify the sex of crabs from physical dimensions of the crab. - Wine Classification
This example illustrates how a pattern recognition neural network can classify wines by winery based on its chemical characteristics. - Cancer Detection
This example shows how to train a neural network to detect cancer using mass spectrometry data on protein profiles. - Character Recognition
This example illustrates how to train a neural network to perform simple character recognition.
Autoencoder
- Train Stacked Autoencoders for Image Classification
This example shows how to train stacked autoencoders to classify images of digits.
Concetti
- Workflow per la progettazione delle reti neurali
Apprendere le fasi principali del processo di progettazione di una rete neurale.
- Four Levels of Neural Network Design
Learn the different levels of using neural network functionality.
- Reti neurali superficiali multilivello e addestramento sulla retropropagazione
Workflow per la progettazione di una rete neurale superficiale multilivello feed-forward per l'adattamento di funzioni e il riconoscimento di pattern.
- Architettura della rete neurale superficiale multilivello
Apprendere l'architettura di una rete neurale superficiale multilivello.
- Understanding Shallow Network Data Structures
Learn how the format of input data structures affects the simulation of networks.
- Set di dati campione per reti neurali superficiali
Elenco di set di dati campione da utilizzare negli esperimenti con reti neurali superficiali.
- Neural Network Object Properties
Learn properties that define the basic features of a network.
- Neural Network Subobject Properties
Learn properties that define network details such as inputs, layers, outputs, targets, biases, and weights.