Pretrained Networks
Use transfer learning to take advantage of the knowledge provided by a pretrained network to learn new patterns in new image data. Fine-tuning a pretrained image classification network with transfer learning is typically much faster and easier than training from scratch. Using pretrained deep networks enables you to quickly create models for new tasks without defining and training a new network, having millions of images, or having a powerful GPU. To explore the pretrained networks available, use Deep Network Designer.
App
Deep Network Designer | Progetta, visualizza e addestra le reti di Deep Learning |
Funzioni
Blocchi
Argomenti
- Classify Webcam Images Using Deep Learning
This example shows how to classify images from a webcam in real time using the pretrained deep convolutional neural network GoogLeNet.
- Addestramento della rete di Deep Learning per classificare nuove immagini
Questo esempio mostra come utilizzare il transfer learning per riaddestrare una rete neurale convoluzionale, per classificare un nuovo set di immagini.
- Transfer learning utilizzando una rete preaddestrata
Questo esempio mostra come perfezionare una rete neurale convoluzionale GoogLeNet preaddestrata per eseguire la classificazione di una nuova raccolta di immagini.
- Reti neurali profonde preaddestrate
Apprendere come scaricare e utilizzare le reti neurali convoluzionali preaddestrate per la classificazione, il transfer learning e l’estrazione di feature.
- Deep Learning in MATLAB
Scoprire le capacità del Deep Learning in MATLAB® utilizzando le reti neurali convoluzionali per la classificazione e la regressione, incluse le reti preaddestrate e il transfer learning, nonché l’addestramento su GPU, CPU, cluster e cloud.
- Deep Learning Tips and Tricks
Learn how to improve the accuracy of deep learning networks.
- Data Sets for Deep Learning
Discover data sets for various deep learning tasks.