Operazioni
È possibile utilizzare i livelli integrati per la maggior parte delle attività. Se non è presente un livello integrato necessario per l’attività, è possibile definire un proprio livello personalizzato. È possibile definire livelli personalizzati con parametri apprendibili e di stato. Dopo aver definito un livello personalizzato, è possibile verificare che il livello sia valido, compatibile con la GPU e che produca gradienti definiti correttamente. Per saperne di più, vedere Define Custom Deep Learning Layers. Per un elenco dei livelli di supportati, vedere List of Deep Learning Layers.
Se la funzione trainingOptions
non fornisce le opzioni di addestramento necessarie per l'attività o se è presente una funzione di perdita non supportata dalla funzione trainnet
, è possibile definire un loop di addestramento personalizzato. Per i modelli che non possono essere specificati come reti di livelli, è possibile definire il modello come funzione. Per saperne di più, vedere Define Custom Training Loops, Loss Functions, and Networks.
Utilizzare le operazioni di Deep Learning per sviluppare codice MATLAB® per i livelli personalizzati, i loop di addestramento e le funzioni del modello.
Funzioni
Argomenti
Differenziazione automatica
- List of Functions with dlarray Support
View the list of functions that supportdlarray
objects. - Automatic Differentiation Background
Learn how automatic differentiation works. - Use Automatic Differentiation In Deep Learning Toolbox
How to use automatic differentiation in deep learning. - Define Custom Deep Learning Operations
Learn how to define custom deep learning operation. - Specify Custom Operation Backward Function
This example shows how to define the SReLU operation as a differentiable function and specify a custom backward function. - Train Model Using Custom Backward Function
This example shows how to train a deep learning model that contains an operation with a custom backward function.
Funzioni del modello
- Train Network Using Model Function
This example shows how to create and train a deep learning network by using functions rather than a layer graph or adlnetwork
. - Update Batch Normalization Statistics Using Model Function
This example shows how to update the network state in a network defined as a function. - Make Predictions Using Model Function
This example shows how to make predictions using a model function by splitting data into mini-batches. - Initialize Learnable Parameters for Model Function
Learn how to initialize learnable parameters for custom training loops using a model function.
Accelerazione della funzione di Deep Learning
- Deep Learning Function Acceleration for Custom Training Loops
Accelerate model functions and model loss functions for custom training loops by caching and reusing traces. - Accelerate Custom Training Loop Functions
This example shows how to accelerate deep learning custom training loop and prediction functions. - Check Accelerated Deep Learning Function Outputs
This example shows how to check that the outputs of accelerated functions match the outputs of the underlying function. - Evaluate Performance of Accelerated Deep Learning Function
This example shows how to evaluate the performance gains of using an accelerated function.