Build Deep Neural Networks
Create new deep networks for tasks such as classification, regression, and forecasting by defining the network architecture from scratch. Build networks using MATLAB or interactively using Deep Network Designer.
For most tasks, you can use built-in layers. If there is not a built-in layer that you need for your task, then you can define your own custom layer. You can specify a custom loss function using a custom output layer and define custom layers with learnable and state parameters. After defining a custom layer, you can check that the layer is valid, GPU compatible, and outputs correctly defined gradients. For a list of supported layers, see List of Deep Learning Layers.
For models that layer graphs do not support, you can define a custom model as a function. To learn more, see Define Custom Training Loops, Loss Functions, and Networks.
App
Deep Network Designer | Progetta, visualizza e addestra le reti di Deep Learning |
Funzioni
Argomenti
Built-In Layers
- Train Network with Numeric Features
This example shows how to create and train a simple neural network for deep learning feature data classification. - Creazione di una rete di classificazione di sequenze semplice con Deep Network Designer
Questo esempio mostra come creare una rete long short-term memory di classificazione semplice con l’uso di Deep Network Designer. - Classificazione di sequenze utilizzando il Deep Learning
Questo esempio mostra come classificare i dati sequenziali utilizzando una rete con memoria a breve e lungo termine (LSTM). - Classificazione sequenza-sequenza utilizzando il Deep Learning
Questo esempio mostra come classificare ogni fase temporale dei dati sequenziali utilizzando una rete con memoria a breve e lungo termine (LSTM). - Sequence-to-Sequence Regression Using Deep Learning
This example shows how to predict the remaining useful life (RUL) of engines by using deep learning. - Sequence-to-One Regression Using Deep Learning
This example shows how to predict the frequency of a waveform using a long short-term memory (LSTM) neural network. - Long Short-Term Memory Neural Networks
Learn about long short-term memory (LSTM) neural networks. - Example Deep Learning Networks Architectures
This example shows how to define simple deep learning neural networks for classification and regression tasks. - Multiple-Input and Multiple-Output Networks
Learn how to define and train deep learning networks with multiple inputs or multiple outputs. - List of Deep Learning Layers
Discover all the deep learning layers in MATLAB. - Build Networks with Deep Network Designer
Interactively build and edit deep learning networks in Deep Network Designer. - Deep Learning in MATLAB
Scoprire le capacità del Deep Learning in MATLAB utilizzando le reti neurali convoluzionali per la classificazione e la regressione, incluse le reti preaddestrate e il transfer learning, nonché l’addestramento su GPU, CPU, cluster e cloud. - Deep Learning Tips and Tricks
Learn how to improve the accuracy of deep learning networks. - Data Sets for Deep Learning
Discover data sets for various deep learning tasks.
Custom Layers
- Define Custom Deep Learning Layers
Learn how to define custom deep learning layers. - Define Custom Deep Learning Intermediate Layers
Learn how to define custom deep learning intermediate layers. - Define Custom Deep Learning Output Layers
Learn how to define custom deep learning output layers. - Check Custom Layer Validity
Learn how to check the validity of custom deep learning layers. - Replace Unsupported Keras Layer with Function Layer
This example shows how to import the layers from a pretrained Keras network, replace the unsupported layers with function layers, and assemble the layers into a network ready for prediction.