# Polinomi

I polinomi sono equazioni di una sola variabile con esponenti interi non negativi. MATLAB® rappresenta i polinomi con vettori numerici contenenti i coefficienti polinomiali ordinati per potenza decrescente. Ad esempio, `[1 -4 4]` corrisponde a x2 - 4x + 4. Per maggiori informazioni, vedere Create and Evaluate Polynomials.

## Funzioni

 `poly` Polynomial with specified roots or characteristic polynomial `polydiv` Polynomial long division (Da R2024a) `polyeig` Polynomial eigenvalue problem `polyfit` Adattamento della curva polinomiale `residue` Partial fraction expansion (partial fraction decomposition) `roots` Radici polinomiali `polyval` Valutazione polinomiale `polyvalm` Matrix polynomial evaluation `conv` Convoluzione e moltiplicazione polinomiale `deconv` Least-squares deconvolution and polynomial division `polyint` Polynomial integration `polyder` Polynomial differentiation

## Argomenti

• Create and Evaluate Polynomials

This example shows how to represent a polynomial as a vector in MATLAB® and evaluate the polynomial at points of interest.

• Roots of Polynomials

Calculate polynomial roots numerically, graphically, or symbolically.

• Integrate and Differentiate Polynomials

This example shows how to use the `polyint` and `polyder` functions to analytically integrate or differentiate any polynomial represented by a vector of coefficients.

• Polynomial Curve Fitting

This example shows how to fit a polynomial curve to a set of data points using the `polyfit` function.

• Programmatic Fitting

There are many functions in MATLAB that are useful for data fitting.